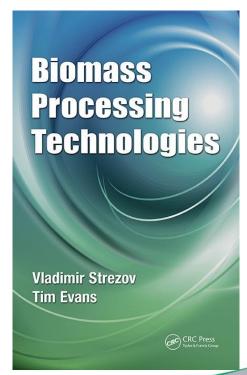
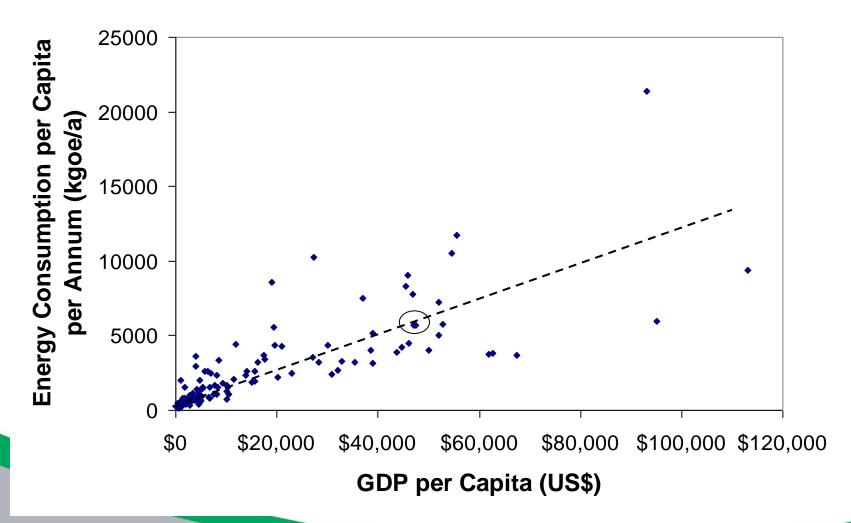
1st South East European Conference on Sustainable Development of Energy, Water and Environment Systems

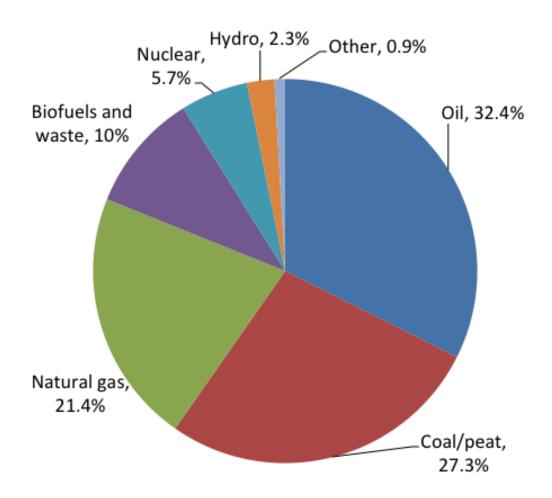
System Approach to Sustainable Biofuel Production


A/Prof Vladimir Strezov

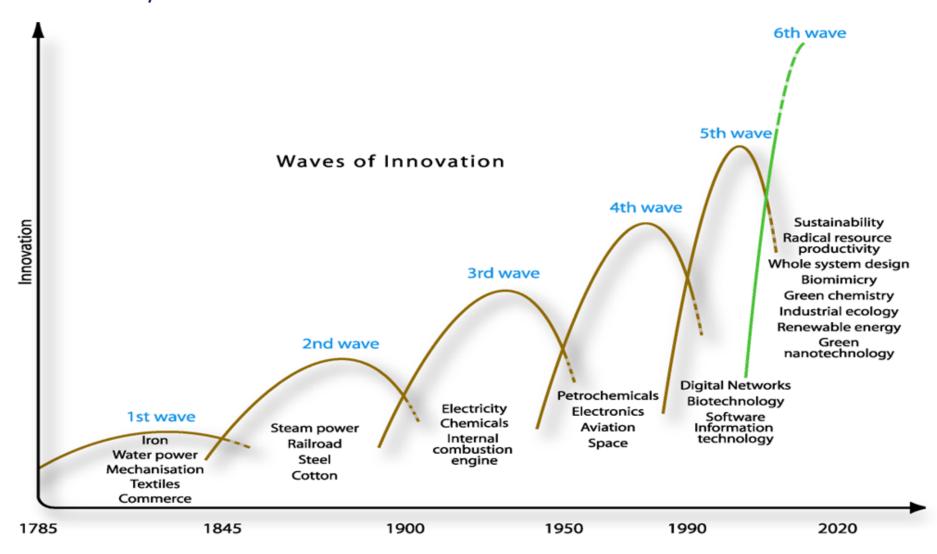
Department of Environment and Geography Macquarie University, Sydney, Australia


Outline

- Energy and sustainability
- Biomass properties
- Biomass processing technologies
- Production of biofuels
- System engineering of biomass applications



Energy Use and Economy


Total world primary energy production

Innovation is the central issue in economic prosperity. Michael Porter, Harvard Business School

Source: The Natural Edge Project

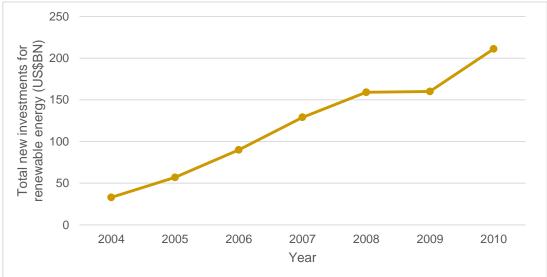
The Natural Advantage of Nations (Vol.I): Business Opportunities, Innovation and Governance in the 21st Century

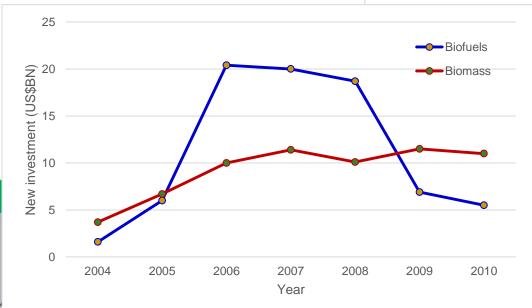
http://www.naturaledgeproject.net/

AMP fund dumps fossil fuel investments

AMP says its fund has placed limits on fossil fuel investment in response to investor concerns about climate change. Photo: Erin Jonasson

Another big investor has decided to reduce its exposure to fossil fuels, with AMP Capital announcing that its "responsible" funds would have limited scope to invest in certain mining and energy companies.


The changes will see 56 companies ruled out of bounds for the funds, and see the affected industries grouped with pornographers, weapons manufacturers, gaming companies, uranium miners, and producers of alcohol and tobacco.


In a move that follows bans by several church funds and banks in northern Europe, AMP said the changes were in response to "growing interest and concern" about climate change from investors.

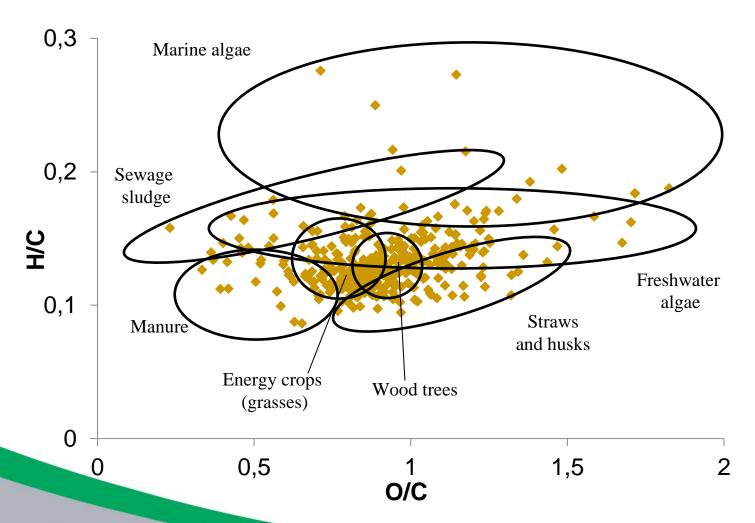
Investments in renewable and biomass

energy

Source: McCrone, et al., 2011

Definition of biomass

 any renewable material sourced from a biological origin and includes anthropogenic-modified material including products, by-products, residues and waste from agriculture, industry and the municipality

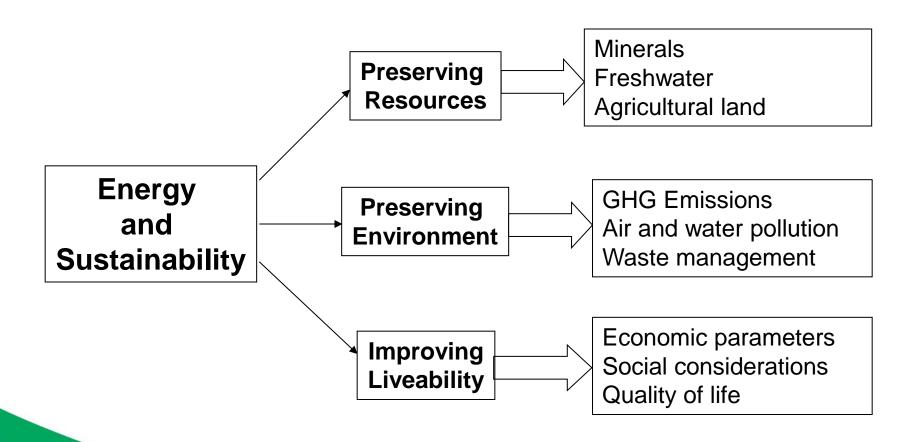

$$CO_2 + H_2O + hv \rightarrow \{CH_2O\} + O_2$$

Where hv is the energy from the sun and $\{CH_2O\}$ is the organic plant material with the basic form accepted to be that of glucose $C_6H_{12}O_6$

Source: McKendry, Bioresource Technology, 83, 37-46, 2002

		Plants	Terrestrial	Wood	Roots					
					Trunk					
					Leaves					
				Non-wood	Herbaceous plants					
					Grasses					
				Fruit	Soft fruit					
					Seeds					
	c				Hard shells					
	<u>.</u>		Aquatic	Freshwater algae						
	ō			Saltwater	twater Microalgae					
	cal				Macroalgae					
	Biological origin	Animals	Tallow							
	jo		Manure							
	<u>m</u>	Human	Sewage							
		Accidental (wastes	Weeds							
		and residues)	Agricultural wastes							
			Forest wastes							
			Industrial and commercial wastes							
		Deliberately cultivated (energy crops)	Cultivation conditions	ditions Soil Biomass cultivated			soils			
					Biomass cultivated on marginal					
					soils and degraded land					
	rte			Water	Freshwater	, o	<u>.</u> _			
	5				Saltwater	Natural (creeks, rivers, lakes, sea, ocean)	Photobi reactor			
	u				Cantwator	Na (cr rive lak seg oce	Ph			
	uction route		Edible properties	Edible (food crops)	•					
	np			Non-edible						
	prod	Natural biomass	Biomass replanted	Short regrowth rates						
	Biomass		after harvesting	Long regrowth rates						
ı	ПO		Biomass not replaced	Biomass regenerated naturally						
	Ö		after harvesting	Biomass regeneration	on suppressed by	other plants and v	weeds			

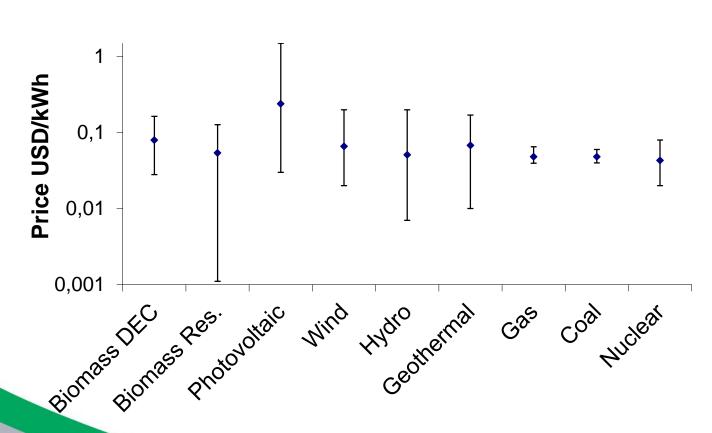
H:C to O:C diagram



Biomass fuel quality

- Lipid to carbohydrate ratio (L/C)
 - □ L/C >0.5 suitable for biodiesel production
 - African oil palm L/C = 4.7
- Carbohydrate to fibre ratio (C/F)
 - C/F>5 indicates suitability for fermentation
- Moisture to Fixed Carbon ratio (moist/FC)
- Ash to Fixed Carbon ratio (ash/FC)
- Mineral matter properties
- Grindability

Energy and Sustainability



Sustainability Indicators for Power Generation Technologies

- Sustainability = Benefits / Risks
 Risk = Hazard + Outrage (P. Sandman, 1993)
- Parameters:
 - Cost of electricity
 - Greenhouse gas emissions
 - Availability of resources and technological limitations
 - Efficiency of energy generation
 - Land use
 - Water consumption
 - Social impacts

Typical Costs for Electricity Generation

Mean Price USD/kWh:

Biomass

DEC \$0.054

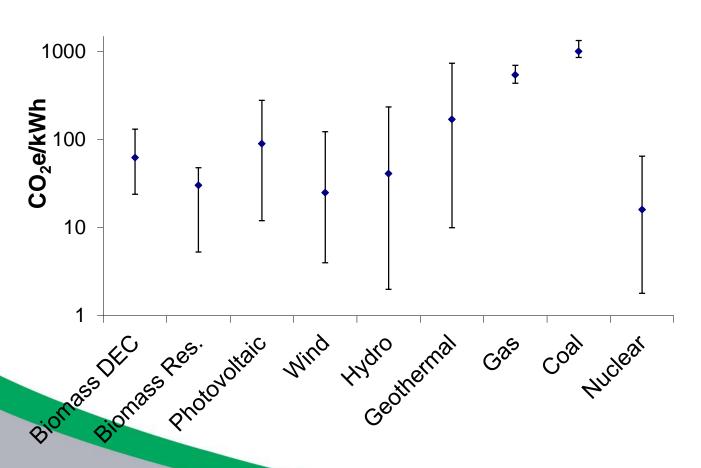
Res \$0.08

PV \$0.24

Wind \$0.07

Hydro \$0.05

Geoth \$0.07


Coal \$0.042

Gas \$0.048

Nucle \$0.043

Greenhouse Gas Emissions for Electricity Generation

GHG emissions gCO_{2-e}/kWh:

Diomass	
DEC	62
Res	30

Riomass

PV	90
Г۷	30

Fossil Fuel Reserves

Under current consumption rates fossil fuel reserves are estimated at:

Black Coal → 173 years

Brown Coal → 225 years

Oil \rightarrow 45 years

Gas \rightarrow 66 years

(Uranium \rightarrow 49 years)

From: Fossil Fuels Reserves and Alternatives, Royal Netherlands Academy of Arts & Sciences, 2005

Land Use and Water Consumption

Technology	Footprint m ² /kWh	Water use kg/kWh
Biomass DEC	0.553	90
Biomass Res.	0.001	78
Photovoltaic	0.045	0.01
Wind	0.072	0.001
Hydro	0.152	36
Geothermal	0.05	12
Gas	0.003	78
Coal	0.004	78
Nuclear	0.0005	107

Survey

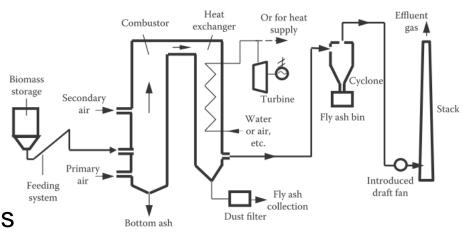
- Solar is the most popular technology by a significant margin with 50% of support
- Wind has high public support at 13%
- Geothermal and biomass are not well understood in Australia
- Hydro is favoured when existing dams are used, new dams are highly controversial
- 70% of Australians want to move away from coal and >75% do not want nuclear introduced

Sustainability Ranking

Ranking	Technology	Scaled Value
1	Wind	0.55
2	Hydro	0.57
3	Geothermal	0.70
4	PV	0.77
5	Biomass Residues	0.78
6	Gas	0.79
7	Nuclear	0.79
8	Coal	0.82
9	Biomass Crops	1

Evans et al., Renewable and Sustainable Energy Reviews, 13, 1082-1088, 2009 Evans et al., Renewable and Sustainable Energy Reviews, 14, 1419-1427, 2010

Source: N. Myers, 2006


Processing of biomass fuels

Thermochemical	Combustion	Heat
Processing		Steam
		Electricity
	Gasification	Steam
		Heat
		Electricity
		Methane
		Hydrogen
	Pyrolysis	Charcoal/biochar
		Biogas
		Bio-oil
	Hydrothermal	Charcoal
	processing	Biogas
		Bio-oil
Biochemical	Anaerobic	Biogas
Processing	digestion	Digestate
	Fermentation	Ethanol
		Fermentate
Physicochemical	Esterification	Biodiesel
Processing		

Biomass combustion

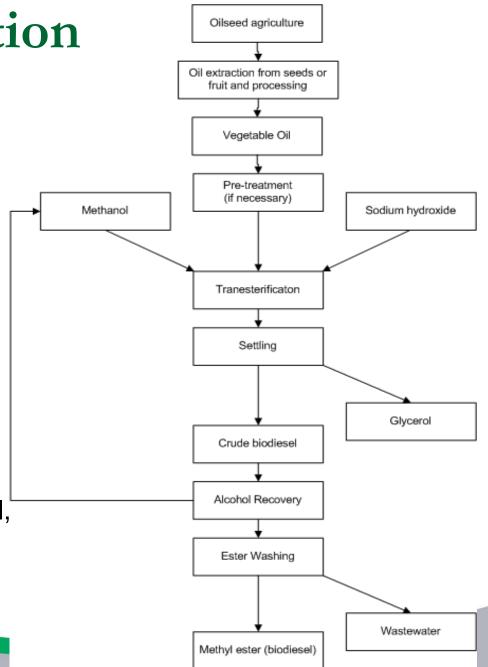
Cofiring with coal:

- 1) direct co-firing where biomass is pre-mixed with coal and then fed into the combustor along with coal;
- 2) parallel co-firing, where biomass and coal are combusted in separate combustors and the steam streams produced from different combustors then converge;
- 3) indirect co-firing, when the biomass fuel is firstly gasified separately and the produced gas is then combusted in the downstream coal boiler.

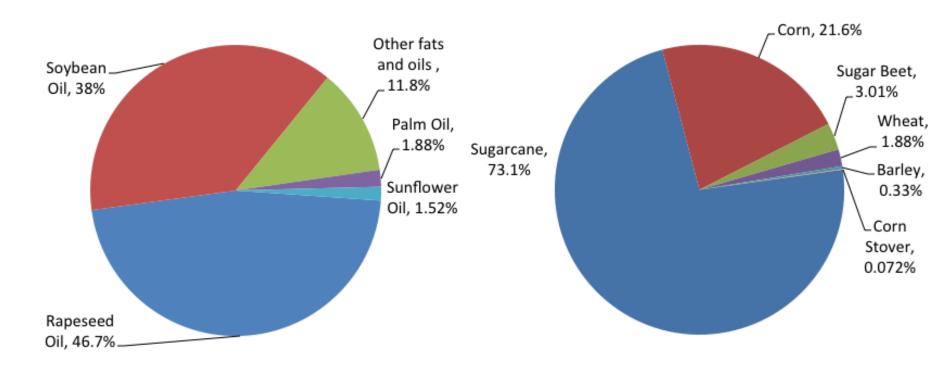
FIGURE 3.1Basic components of an integrated boiler system for biomass combustion.

Source: Strezov and Evans, Biomass Processing Technologies, CRC Press, 2014

Generations of Liquid Biofuel Sources


G1	G2	G3	G4
Soya Oil	Switchgrass	Algae	Carbon
Rape Oil	Waste		Negative
Palm Oil	Biomass	Genetically	Biomass
Tallow	Wheat	Modified	
Sugarcane	Stalks	Crops	Integrated
Corn	Corn Husks		geo- engineering
Sugarbeet			
Wheat			

Biodiesel production


Five steps:

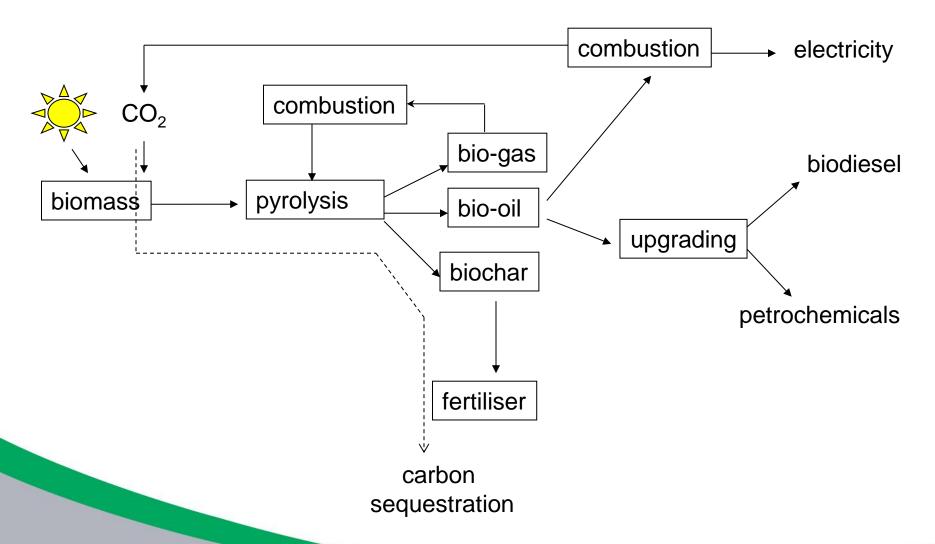
- (1) oil production,
- (2) pretreatment of oils to remove components that would be detrimental to subsequent processing steps,
- (3) esterification whereby the pretreated oils are reacted with alcohol to form alkyl esters (biodiesel) and glycerol,
- (4) separation of the glycerol from the alkyl ester, and
- (5) alkyl ester purification to remove any soaps and remaining methanol, catalyst and glycerol

Biofuel production in 2012

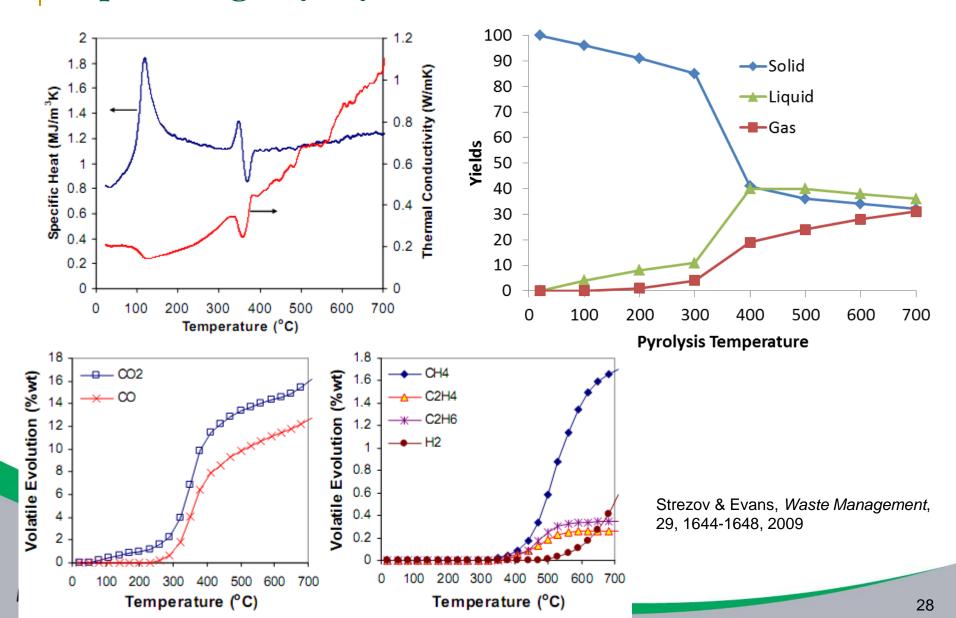
Biodiesel production

Ethanol production

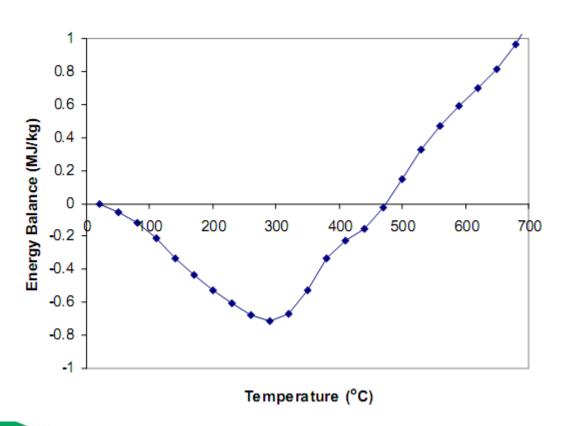
Source: FAPRI (Food and agricultural policy research Institute), 2013


Biofuel production in 2011

Country	Total Biofuels (Mtoe)	Biodiesel (Mtoe)	Biogasoline (Mtoe)	Other liquid biofuels (Mtoe)
USA	29,626	2,807	26,721	99
Brazil	17,629	2,427	4,540	10,662
Germany	4,224	2,499	367	1,358
Argentina	2,543	2,543		
France	1,921	1,494	428	
China	1,359	194	1,165	
Italy	1,246	554	145	547
Spain	844	609	235	
Canada	839		839	
Thailand	808	588	222	
Sweden	638	233	213	192
Indonesia	524	524		
Netherlands	441	434		6.8
Poland	436	262	97	76
Belgium	378	285	50	42
Portugal	323	319		3.5
Australia	320	62	259	


Source: Euromonitor International (2012)

Biomass pyrolysis



Paper Sludge Pyrolysis

Energy Balance for Paper Sludge Pyrolysis

For a dried paper sludge sample, the energy balance, becomes positive under stoichiometric and no-heat loss conditions at temperatures above 500 °C.

Strezov & Evans, Waste Management, 29, 1644-1648, 2009

Typical Properties of Bio-Oil, and Light and Heavy Fuel Oils

Analysis	Pyrolysis Liquids	Light Fuel Oil	Heavy Fuel Oil	
Water, wt %	20-30	0.025	0.1	
Solids, wt %	< 0.5	0	0.2-1	
Ash, wt %	< 0.2	0.01	0.03	
Carbon, wt %	32-48	86	85.6	
Hydrogen, wt %	7-8.5	13.6	10.3	
Nitrogen, wt %	< 0.4	0.2	0.6	
Oxygen, wt %	44-60	0	0.6	
Sulphur, wt %	< 0.05	< 0.18	2.5	
Vanadium, ppm	0.5	< 0.05	100	
Sodium, ppm	38	< 0.01	20	
Calcium, ppm	100	Not analysed	1	
Potassium, ppm	220	< 0.02	1	
Chloride, ppm	80	Not analysed	3	
Stability	Unstable	Stable	Stable	
Viscosity, cSt	15-35 at 40°C	3-7.5 at 40°C	351 at 50°C	
Density (at 15°C), kg/dm ³	1.1-1.3	0.89	0.94-0.96	
Flash point, °C	40-110	60	100	
Pour point, °C	−10 to −35	-15	21	
Conradson carbon residue, wt %	14-23	9	12.2	
LHV, MJ/kg	13-18	40.3	40.7	
pH	2–3	Neutral	Not analysed	
Distillability	Not distillable	160°C-400°C		

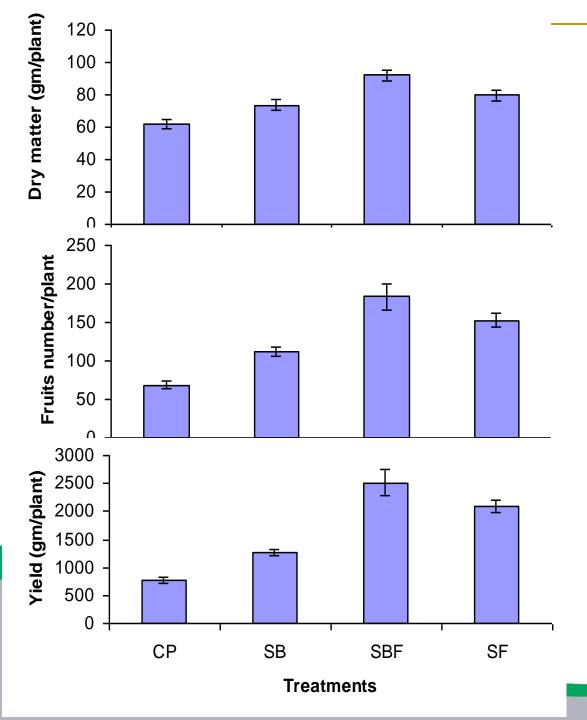
Source: Chiaramonti, D. et al., Renewable and Sustainable Energy Reviews 11, 1056-1086, 2007.

Agricultural use of the biochar – Terra Preta Soils

Source: Glacer, http://www.carbon-terra.eu/en/biochar/application/Terra Preta


Terra Preta or "dark earth" are carbon-rich soils discovered in the Amazon region

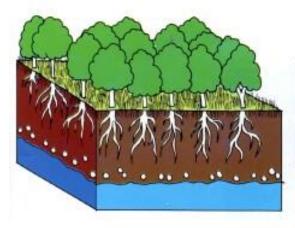
Biochar is now used to produce Terra Preta type of fertile soils as it improves:

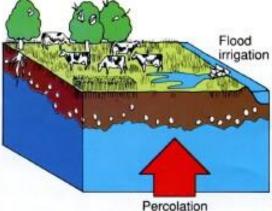

- Water holding capacity
- Soil aeration
- Improves microbial activity
- Stimulates nutrient dynamics
- Stops nutrient leaching
- Carbon mitigation

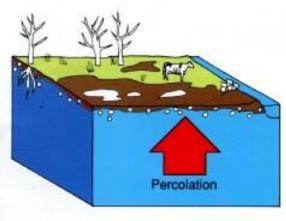
Tomato cultivation with sewage sludge biochar

Tomatoes grown in:

$$CP = soil only$$


$$SB = soil + 10\%$$
 biochar


Hossain et al, *Chemosphere*, 78, 1167-1171, 2010


Western Australia Mallee Tree Project

Soil salinity

Before clearing

The system is in balance. Most water is used where it falls.

After clearing and irrigating

Evaporation and irrigation seepage concentrates saline groundwater at the surface.

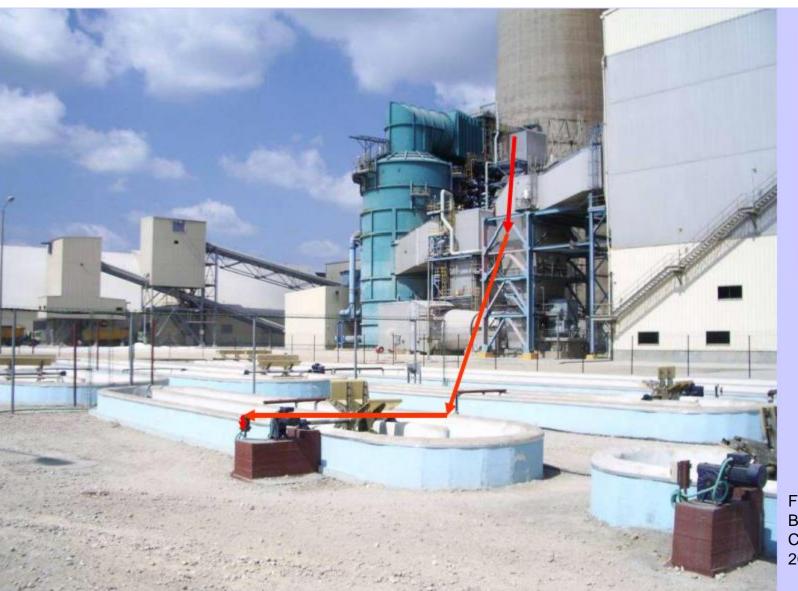
Later

Protective plant cover is killed by the accumulation of salt at the surface. The land is open to erosion.

Sources:

http://vro.depi.vic.gov.au/dpi/vro/vrosite.nsf/pages/lwm_salinity_management_irrigation

Continuous Biomass Converter at Vales Point Power Station



Wellington

Oxley Wild Rivers

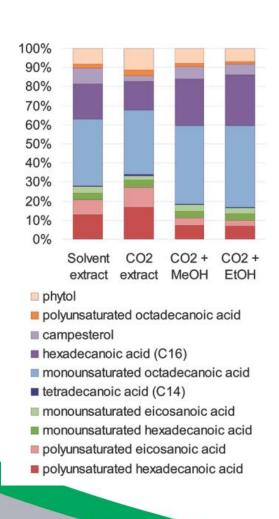
Muswellbrook

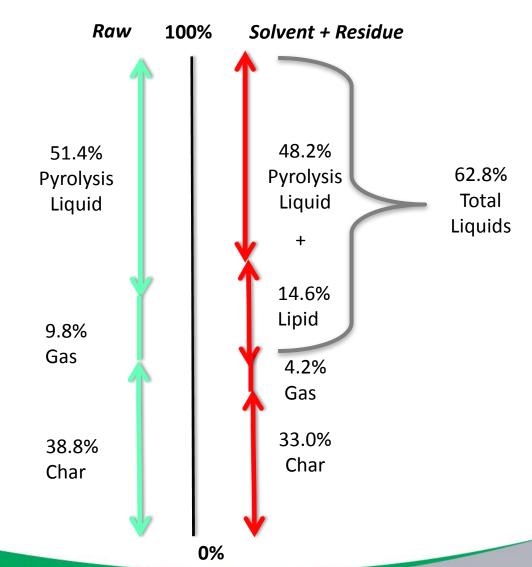
Algal biomass

From: A. Ben-Amotz, Bio-Fuel and CO2 Capture by Algae, 2008

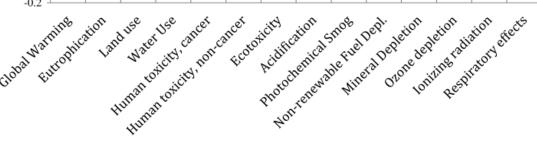
Bio-oil Extraction from Algae

Algae Biomass


Algae Bio-oil


Algae Bio-char

Processing of microalgae



Environmental Impact Contribution per tonne of algae

	O		2.2				■ Spr	ay Dryin	g
Impact category	Unit	Microalgae	Soybean	Canola seed			■ Ter	tiary Har	vesting
Global warming	kg CO ₂ eq	-222	243.3	738.5			■ Sec	ondary F	Harvesting
Eutrophication	kg PO ₄ eq	1.1	0.15	0.42			Prin	mary Har	vesting
Land use	ha a	0.001	0.5	0.8					resting
Water use	kL H ₂ O	96.2	0.6	2.8			Cul	tivation	
Human toxicity, cancer	CTUh	2.0×10^{-9}	1.2×10^{-9}	2.9×10^{-9}					
Human toxicity, non-cancer	CTUh	2.0×10^{-10}	2.0×10^{-10}	4.6×10^{-10}					
Ecotoxicity	CTUe	0.07	0.01	0.05					
Acidification	kg SO ₂ eq	24.9	1.4	5.4					
Photochemical smog	kg NMVOC eq	9.8	1.3	3.4					
Non-renewable fuel depl.	kg oil eq	605.4	62.2	174.9					
Mineral depletion	kg Fe eq	827.3	28.1	155.5					
Respiratory effects	kg PM2.5 eq	3.1	0.24	0.87					
Ecopoints (total)	p	2.23	0.67	1.59					
Equivalence in Ecopoints	p/GJ	0.138	0.039	0.056			\longrightarrow		
Grierson et al, 299-311, 2013	•	nrch,	-0.2						

Conclusions

- Biomass will play one of the key roles in sustainable energy future
 - but, this is subject to how biomass is produced
- Standard classification of biomass properties and quality are needed
 - that will include physico-chemical properties, but also the biomass production route
- Some biomass technologies are already available, but the engineering systems needed for energy sustainability require further research

Acknowledgements

- Prof Tim Evans, Rio Tinto
- Ms Annette Evans, Macquarie University
- Prof Peter Nelson, Macquarie University
- Dr Joe Herbertson, Crucible Group
- Dr Kamal Hossain, Department of Primary Industries
- Dr Scott Grierson, James Cook University
- Dr Tao Kan, Macquarie University
- Mr Gary Leung, Macquarie University
- Dr Katrin Thommes, Macquarie University
- Ms Cara Mulligan, University of Newcastle

Thank you!

Contact:

Vladimir Strezov

vladimir.strezov@mq.edu.au

